Mesh Embedding

N-Penetrate: Active Learning of Neural Collision Handler for Complex 3D Mesh Deformations

We present a robust learning algorithm to detect and handle collisions in 3D deforming meshes. We first train a neural network to detect collisions and then use a numerical optimization algorithm to resolve penetrations guided by the network. To obtain stable network performance in such large and unseen spaces, we apply active learning by progressively inserting new collision data based on the network inferences. We automatically label these new data using an analytical collision detector and progressively fine-tune our detection networks.

Multiscale Mesh Deformation Component Analysis with Attention-based Autoencoders

We propose a novel method to exact multiscale deformation components automatically with a stacked attention-based autoencoder. The attention mechanism is designed to learn to softly weight multi-scale deformation components in active deformation regions, and the stacked attention-based autoencoder is learned to represent the deformation components at different scales.

Variational Autoencoders for Localized Mesh Deformation Component Analysis

We propose a mesh-based variational autoencoder architecture that is able to cope with meshes with irregular connectivity and nonlinear deformations. To help localize deformations, we introduce sparse regularization in this framework, along with spectral graph convolutional operations. Through modifying the regularization formulation and allowing dynamic change of sparsity ranges, we improve the visual quality and reconstruction ability of the extracted deformation components. As an important application of localized deformation components and a novel approach on its own, we further develop a neural shape editing method, achieving shape editing and deformation component extraction in a unified framework, and ensuring plausibility of the edited shapes.

LCollision: Fast Generation of Collision-Free Human Poses using Learned Non-Penetration Constraints

We present LCollision, a learning-based method that synthesizes collision-free 3D human poses. At the crux of our approach is a novel deep architecture that simultaneously decodes new human poses from the latent space and predicts colliding body parts. These two components of our architecture are used as the objective function and surrogate hard constraints in a constrained optimization for collision-free human pose generation. A novel aspect of our approach is the use of a bilevel autoencoder that decomposes whole-body collisions into groups of collisions between localized body parts. By solving the constrained optimizations, we show that a significant amount of collision artifacts can be resolved.

Realtime Simulation of Thin-Shell Deformable Materials using CNN-Based Mesh Embedding

We address the problem of accelerating thin-shell deformable object simulations by dimension reduction. We present a new algorithm to embed a high-dimensional configuration space of deformable objects in a low-dimensional feature space, where the configurations of objects and feature points have approximate one-to-one mapping.

Variational Autoencoders for Deforming 3D Mesh Models

We propose a novel framework which we call mesh variational autoencoders, to explore the probabilistic latent space of 3D surfaces. The framework is easy to train, and requires very few training examples. We also propose an extended model which allows flexibly adjusting the significance of different latent variables by altering the prior distribution.

Mesh-based Autoencoders for Localized Deformation Component Analysis

We propose a novel mesh-based autoencoder architecture that is able to cope with meshes with irregular topology. We introduce sparse regularization in this framework, which along with convolutional operations, helps localize mesh deformations. Our framework is capable of extracting localized deformation components from mesh data sets with large-scale deformations and is robust to noise.