Planning

DeepMNavigate: Deep Reinforced Multi-Robot Navigation Unifying Local & Global Collision

We present a novel algorithm (DeepMNavigate) for global multi-agent navigation in dense scenarios using deep reinforcement learning. Our approach uses local and global information for each robot based on motion information maps. We demonstrate the performance on complex, dense benchmarks with narrow passages on environments with tens of agents. We highlight the algorithm’s benefits over prior learning methods and geometric decentralized algorithms in complex scenarios.