
Realtime Simulation of Thin-Shell Deformable Materials using CNN-Based Mesh Embedding
Qingyang Tan1, Zherong Pan2, Lin Gao3, and Dinesh Manocha1

Video Link: https://youtu.be/zuXoQYJeAfc

Abstract— We address the problem of accelerating thin-shell
deformable object simulations by dimension reduction. We
present a new algorithm to embed a high-dimensional configu-
ration space of deformable objects in a low-dimensional feature
space, where the configurations of objects and feature points
have approximate one-to-one mapping. Our key technique is
a graph-based convolutional neural network (CNN) defined on
meshes with arbitrary topologies and a new mesh embedding
approach based on physics-inspired loss term. We have applied
our approach to accelerate high-resolution thin shell simulations
corresponding to cloth-like materials, where the configuration
space has tens of thousands of degrees of freedom. We show
that our physics-inspired embedding approach leads to higher
accuracy compared with prior mesh embedding methods.
Finally, we show that the temporal evolution of the mesh in
the feature space can also be learned using a recurrent neural
network (RNN) leading to fully learnable physics simulators.
After training our learned simulator runs 500− 10000× faster
and the accuracy is high enough for robot manipulation tasks.

I. INTRODUCTION

A key component in robot manipulation tasks is a dy-
namic model of target objects to be manipulated. Typical
applications include cloth manipulation [27], [32], liquid
manipulation [43], and in-hand rigid object manipulation
[45]. Of these objects, cloth is unique in that it is modeled
as a thin-shell, i.e., a 2D deformable object embedded in
a 3D workspace. To model the dynamic behaviors of thin-
shell deformable objects, people typically use high-resolution
meshes (e.g. with thousands of vertices) to represent the
deformable objects. Many techniques have been developed to
derive a dynamic model under a mesh-based representation,
including the finite-element method [31], the mass-spring
system [6], [11], the thin-shell model [21], etc. However,
the complexity of these techniques can vary from O(n1.5)
to O(n3) [20], where n is the number of DOFs, which makes
them very computationally cost on high-resolution meshes.
For example, [39] reported an average computational time
of over 1 minute for predicting a single future state of a
thin-shell mesh with around 5000 vertices. This simulation
overhead is a major cost in various cloth manipulation
algorithms including [27], [32], [30].

In order to reduce the computational cost, one recent trend
is to develop machine learning methods to compute low-
dimensional embeddings of these meshes. Low-dimensional
embeddings were original developed for applications such
as image compression [29] and dimension reduction [56].
The key idea is to find a low-dimensional feature space with
approximate one-to-one mapping between a low-dimensional

1Qingyang Tan and Dinesh Manocha are with Department of Computer
Science and Electrical & Computer Engineering, University of Maryland
at College Park. {qytan,dm@cs.umd.edu} 2Zherong Pan is with Depart-
ment of Computer Science, University of North Carolina at Chapel Hill.
{zherong@cs.unc.edu} 3Lin Gao is with Institute of Computing Technol-
ogy, Chinese Academy of Sciences. {gaolin@ict.ac.cn}

feature point and a high-dimensional mesh shape. So that the
low-dimensional feature point can be treated as an efficient,
surrogate representation of the original mesh.

However, computing low-dimensional embeddings for
general meshes poses new challenges because, unlike 2D
images, meshes are represented by a set of unstructured
vertices connected by edges and these vertices can undergo
large distortions when cloth deforms. As a result, a cen-
tral problem in representing mesh deformation data is to
find an effective parameterization of the feature space that
can handle arbitrary mesh topologies and large, nonlinear
deformations. Several methods for low-dimensional mesh
embeddings are based on PCA [2], localized PCA [40],
and Gaussian Process [55]. However, these methods are
based on vertex-position features and cannot handle large
deformations.

Main Results: We present a novel approach that uses
physics-based constraints to improve the accuracy of low-
dimensional embedding of arbitrary meshes for deformable
simulation. We further present a fully learnable physics sim-
ulator of clothes in the feature space. The novel components
of our algorithm include:
• A mesh embedding approach that takes into account

the inertial and internal potential forces used by a
physical simulator, which is achieved by introducing
a physics-inspired loss function term, i.e., vertex-level
physics-based loss term (PB-loss). This also preserves
the material properties of the mesh.

• A stateful, recurrent feature-space physics simulator that
predicts the temporal changes of meshes in the fea-
ture space, which are modeled by introducing accurate
enough for learning cloth features and training cloth
manipulation controllers (see Figure 5).

To test the accuracy of our method, we construct multiple
datasets by running cloth simulations using a high-resolution
mesh under different material models, material parameters,
and mesh topologies. We show that our embedding approach
leads to better accuracy in terms of physics rule preservation
than prior method [47] that uses only a data term, with
up to 70% improvement. We have also observed up to
19% and 18% improvements in mesh embedding accuracy
on commonly used metrics such as Mrms and MSTED.
Finally, we show that our feature space physics simulator
can robustly predict dynamic behaviors of clothes undergoing
unseen robot manipulations, while achieving 500− 10000×
speedup over simulators running in the high-dimensional
configuration space.

The paper is organized as follows. We first review related
work in Section II. We define our problem and introduce
the basic method of low-dimensional mesh embedding in
Section III. We introduce our novel PB-loss and the learnable
simulation architecture in Section IV. Finally, we describe

https://youtu.be/zuXoQYJeAfc

Local Filter

Autoencoder

... ...

Mass-Spring
Model

Vertex under consideration
1-Ring neighbor
2-Ring neighbor

Local filter stencil
1-Ring spring
2-Ring spring

Dihedral angle

Ps

Pb Pb

Ps

FEM
Model

(a)

(b)
(c) (d)

pm

ACAP

C F FT CT ACAP−1

E D Lrecon

L̃phys

Lvert

Fig. 1: Overview of our method: Each generated mesh (pm) is represented as vertices connected by edges. (a): We use a
graph-based CNN where each convolutional layer is a local filter and the filter stencil is the 1-ring neighbor (red arrow).
(b): We build an autoencoder using the filter-based convolutional layers. The decoder D mirrors the encoder E and both
D,E use L convolutional layers and one fully connected layer. The input of E and the output of D are defined in the
ACAP feature space, in which we define the reconstruction loss, Lrecon. We recover the vertex-level features, pm, using
the function ACAP−1, on which we define our PB-loss, Lphys, and vertex-level regularization, Lvert. The PB-loss can
be formulated using two methods. (c): In the mass-spring model, the stretch resistance term is modeled as springs between
each vertex and its 1-ring neighbors (blue) and the bend resistance term is modeled as springs between each vertex and its
2-ring neighbors (green). (d): FEM models the stretch resistance term as the linear elastic energy on each triangle and the
bend resistance term as a quadratic penalty on the dihedral angle between each pair of neighboring triangles (yellow).

the applications in Section V and highlight the results in
Section VI.

II. RELATED WORK AND BACKGROUND

We summarize related work in mesh deformations and
representations, deformable object simulations, and machine
learning methods for mesh deformations.

Deformable Simulation for Robotics are frequently
encountered in service robots applications such as laun-
dry cleaning [8], [30] and automatic cloth dressing [12].
Studying these objects can also benefit the design of soft
robots [38], [16]. While these soft robots are usually 3D
volumetric deformable objects, we focus on 2D shell-like
deformable objects or clothes. In some applications such as
visual servoing [26] and tracking [10], deformable objects
are represented using point clouds. In other applications
including model-based control [42] and reconstruction [49],
the deformable objects are represented using meshes and
their dynamics are modeled by discretizing the governing
equations using the finite element method (FEM). Solving
the discretized governing equation is a major bottleneck in
training a cloth manipulation controller, e.g., [5] reported up
to 5 hours of CPU time spend on thin-shell simulation which
is 4-5 times more costly than the control algorithm.

Deformable Object Simulations is a key component
in various model-based control algorithms such as virtual
surgery [3], [4], [33] and soft robot controllers [42], [14],
[27]. However, physics simulators based on the finite element
method [31], the boundary-element method [9], or simplified
models such as the mass-spring system [11] have a super-
linear complexity. An analysis is given in [20], resulting
in O(n1.5) complexity, where n is the number of DOFs.
In a high-resolution simulation, n can be in the tens of
thousands. As a result, learning-based methods have recently

been used to accelerate physics simulations. This can be
done by simulating under a low-resolution using FEM and
then upsampling [52] or by learning the dynamics behaviors
of clothes [41] and fluids [51]. However, these methods
are either not based on meshes [51] or not able to handle
arbitrary topologies [41].

Machine Learning Methods for Mesh Deformations has
been in use for over two decades, of which most methods
are essentially low-dimensional embedding techniques. Early
work are based on principle component analysis (PCA) [2],
[56], [40] that can only represent small, local deformations or
Gaussian processes [50], [55] that are computationally costly
to train and do not scale to large datasets. Recently, deep
neural networks have been used to embed high-dimensional
nonlinear functions [29], [44]. However, these methods rely
on regular data structures such as 2D images. To handle
meshes with arbitrary topologies, earlier methods [37] repre-
sent a mesh as a 3D voxelized grid or reconstruct 3D shapes
from 2D images [53] using a projection layer. Recently,
methods have been proposed to define CNN directly on mesh
surfaces, such as CNN on parametrized texture space [36],
and CNN based on spatial filtering [15]. The later has been
used in [47] to embed large-scale deformations of general
meshes. Our contribution is orthogonal to these techniques
and can be used to improve the embedding accuracy for any
one of these methods.

III. LOW-DIMENSIONAL MESH EMBEDDING

In this section, we provide an overview of low-dimensional
embedding of thin shell like meshes such as clothes. Our
goal is to represent a set of N deformed meshes, Sm, with
each mesh represented using a set of K vertices, denoted
as pm ∈ R3K . We denote the ith vertex as pm,i ∈ R3.
Here m = 1, · · · , N and i = 1, · · · ,K. These vertices are

(a) (b)

(c) (d)

Fig. 2: A visualization of our two datasets.The SHEET dataset contains 4 simulation sequences, each with N = 2400
frames. (a,b): We generate the dataset by grasping two corners of the cloth (red dot) and moving the grasping points back
and forth along the ±X/Y axes. (c): In two sequences of the SHEET dataset, we add a spherical obstacle to interact with
the cloth. (d): The BALL dataset contains 6 simulation sequences, each with N = 500 frames. We generate the dataset by
grasping the topmost vertex of the cloth ball (red dot) and moving the grasping point back and forth along the ±Z axes.

connected by edges, so we can define the 1-ring neighbor
set, N 1

i , and the 2-ring neighbor set, N 2
i , for each pi, as

shown in Figure 1 (c). Our goal is to find a map z → p,
where z is a low-dimensional feature and p ∈ R3K such
that, for each m, there exists a zm where zm is mapped to a
mesh close to pm. To define such a function, we use graph-
based CNN and ACAP features [18] to represent large-scale
deformations.

A. ACAP Feature

For each Sm, an ACAP feature is computed by first finding
the deformation gradient Tm,i on each vertex:

Tm,i , argmin
T

∑
j∈N 1

i

cij‖(pm,i − pm,j)−T(p1,i − p1,j)‖2, (1)

where cij are cotangent weights [13]. Here, we use S1 as
a reference shape. Next, we perform polar decomposition to
compute Tm,i = Rm,iSm,i where Rm,i is orthogonal and
Sm,i is symmetric. Finally, Rm,i is transformed into log-
space in an as-consistent-as-possible manner using mixed-
integer programming. The final ACAP feature is defined
as ACAPm,i , {log(Rm,i),Sm,i} ∈ R9 due to the
symmetry of Sm,i. We denote the ACAP feature transform
as: ACAP(pm) ∈ R9K . It is suggested, e.g., in [24],
that mapping zm to the ACAP feature space leads to bet-
ter effectiveness in representing large-scale deformations.
Therefore, we define our mapping function to be D(z) :
z→ ACAP(p) and then recover p via the inverse feature
transform: ACAP−1.

B. Graph-Based CNN for Feature Embedding

The key idea in handling arbitrary mesh topologies is to
define D as a graph-based CNN using local filters [15]:

D , CT
L · · ·CT

2 ◦CT
1 ◦ FT ,

where L is the number of convolutional layers and CT is the
transpose of a graph-based convolutional operator. Finally, F
is a fully connected layer. Each layer is appended by a leaky
ReLU activation layer. A graph-based convolutional layer is
a linear operator defined as:

C(ACAP(pm))m,i , W ×ACAPm,i + WN
∑

j∈N 1
i

ACAPm,j/|N 1
i |+ b,

where W,WN ,b are optimizable weights and biases, re-
spectively. All the weights in the CNN are trained in a self-
supervised manner using an autoencoder and the reconstruc-

tion loss:

Lrecon =
N∑

m=1
‖D ◦E ◦ACAP(pm)−ACAP(pm)‖2/N,

where E is a mirrored encoder of D with a weight-tied
architecture defined as:

E , F ◦C1 · · ·CL−1 ◦CL,

which means that each layer in E is a transpose of the corre-
sponding layer in D with shared weights. The construction
of this CNN is illustrated in Figure 1 (a). In the next section,
we extend this framework to make it aware of physics rules.

IV. PHYSICS-BASED LOSS TERM

We present a novel physics-inspired loss term that im-
proves the accuracy of low-dimensional mesh embedding.
Our goal is to combine physics-based constraints with graph-
based CNNs, where our physics-based constraints take a
general form and can be used with any material models
such as FEM [39] and mass-spring system [11]. We assumes
that Sm is generated using a physics simulator that solves a
continuous-time PDE of the form:

M
∂p

∂t
= −force(p,q), (2)

where M is the mass matrix and t is the time. This form
of governing equation is the basis for state-of-the-art thin
shell simulators including [11], [39]. force(p,q) models
internal and external forces affecting the current mesh p.
The force is also a function of the current control parameters
q, which are the positions of the grasping points on the
mesh (red dots of Figure 2). This continuous time PDE
Equation 2 can be discretized into N timesteps such that
Sm is the position of S at time instance i∆t, where ∆t is
the timestep size. A discrete physics simulator can determine
all pm given the initial condition p1,p2 and the sequence of
control parameters q1,q2, · · · ,qN by the recurrent function:

pm , f(pm−2,pm−1,qm), (3)
where f is a discretization of Equation 2. To define this
discretization, we use a derivation of [34] that reformulates
f as the following optimization:

pm , argmin
p

Lphys(pm−2,pm−1,p,qm) (4)

Lphys , ‖p− 2pm−1 + pm−2‖2M/(2∆t2) + P(p,qm).

Note that Equation 4 is just one possible implementation
of Equation 3. Here the first term models the kinematic
energy, which requires each vertex to move in its own

velocity as much as possible if no external forces are exerted.
The second term models forces caused by various potential
energies at configuration p. In this work, we consider three
kinds of potential energy:

• Gravitational energy Pg(p) , −
K∑
i=1

gTMp, where g

is the gravitational acceleration vector.
• Stretch resistance energy, Ps, models the potential force

induced by stretching the material.
• Bending resistance energy, Pb, models the potential

force induced by bending the material.
There are many ways to discretize Ps,Pb, such as the finite
element method used in [39] or the mass-spring model used
in [34], [11]. Both formulations are evaluated in this work.
• [11] models the stretch resistance term, Ps, as a set

of Hooke’s springs between each vertex and vertices
in its 1-ring neighbors. In addition, the bend resistance
term, Pb, is defined as another set of Hooke’s springs
between each vertex and vertices in its 2-ring neighbors.
(Figure 1 (c))

• [39] models the stretch resistance term, Ps, as a linear
elastic energy resisting the in-plane deformations of
each mesh triangle. In addition, the bend resistance
term, Pb, is defined as a quadratic penalty term resisting
the change of the dihedral angle between any pair of two
neighboring triangles. (Figure 1 (d))

Our approach uses Equation 4 as an additional loss func-
tion for training D,E. Since Equation 4 is used for data
generation, using it for mesh deformation embedding should
improve the accuracy of the embedded shapes. However,
there are two inherent difficulties in using P as an loss
function. First, P is defined on the vertex level as a function
of pm, not on the feature level as a function of ACAP(pm).
To address this issue, we use the inverse function ACAP−1

to reconstruct pm from ACAP(pm). The implementation
of ACAP−1 is introduced in Section IV-A. By combining
ACAP−1 with Lphys, we can train the mesh deformation
embedding network using the following loss:
L̃phys , Lphys(ACAP−1 ◦D(zm,m−1,m−2),qm)

Lephys = L̃phys(E ◦ACAP(pm,m−1,m−2),qm). (5)
Our second difficulty is that the embedding network is
stateless and does not account for temporal information.
In other words, function E only takes pm as input, while
Equation 4 requires pm,pm−1,pm−2. To address this is-
sue, we use a small, fully connected, recurrent network to
represent the physics simulation procedure in the feature
space. The training of this stateful network is introduced in
Section IV-B. Finally, in addition to the PB-loss, we also add
an autoencoder reconstruction loss on the vertex level as a
regularization:

Lvert =
N∑

m=1
‖ACAP−1 ◦D ◦E ◦ACAP(pm)− pm‖2/N.

This vertex level loss can be removed from our loss function
without significantly affect the quality of results. However,
Lvert provides complementary information to Lrecon. Since
ACAP is feature in the gradient domain, using only Lrecon

will reconstruct accurate local geometric features, but can
lead to large error in vertices’ positions. Therefore, we
combine Lvert and Lrecon to reduce the gradient domain
errors and absolute vertex position errors.

A. The Inverse of the ACAP Feature Extractor

The inverse of the ACAP function (black block in
Figure 1) involves three steps. Fortunately, each step can
be easily implemented in a modern neural network toolbox
such as TensorFlow [1]. The first step computes Rm,i from
Log(Rm,i) using the Rodrigues’ rotation formula, which
involves only basic mathematical functions such as dot-
product, cross-product, and the cosine function. The second
step computes Tm,i from Rm,i,Sm,i, which is a matrix-
matrix product. The final step computes pm,i from Tm,i.
According to Equation 1, this amounts to pre-multiplying the
inverse of a fixed sparse matrix, L, representing the Poisson
reconstruction. However, this L is rank-3 deficient because
it is invariant to rigid translation. Therefore, we choose to
define a pseudo-inverse by fixing the position of the grasping
points q:

L†p ,
(
I 0

)(L AT

A 0

)−1(
p
q

)
, (6)

which can be pre-factorized. Here A3×3K is a matrix select-
ing the grasping points.

B. Stateful Recurrent Neural Network

A physics simulation procedure is Markovian, i.e. current
configuration

(
pm−1 pm

)
only depends on previous

configuration
(
pm−2 pm−1

)
of the mesh. As a result,

Lphys is a function of both pm−2, pm−1, and pm, which
measures the violation of physical rules. However, our
embedding network is stateless and only models pm. In
order to learn the entire dynamic behavior, we augment
the embedding network with a stateful, recurrent network
represented as a multilayer perceptron (MLP). This MLP
represents a physically correct simulation trajectory in the
feature space and is also Markovian, denoted as:

MLP(zm−2, zm−1,qm) = zm. (7)
Here the additional control parameters q are given to MLP
as additional information. We can build a simple reconstruc-
tion loss below to optimize MLP:

Lsim =
N∑

m=3
‖MLP(zm−2, zm−1,qm)− zm‖2/(N − 2).

In addition, we can also add PB-loss to train this MLP, for
which we define Lmphys on a sequence of N meshes by
unrolling the recurrent network:

Lmphys =
1

N − 2
∗ (8)

(L̃phys(z1, z2,MLP(z1, z2,q3),q3)+

L̃phys(z2, z3,MLP(z2, z3,q4),q4) + · · ·+
L̃phys(zN−2, zN−1,MLP(zN−2, zN−1,qN),qN)).

However, we argue that Equation 8 will lead to a physically
incorrect result and cannot be directly used for training. To
see this, we note that Equation 4 is the variational form of

Equation 2. So that pm is physically correct when Lphys

is at its local minima, i.e. the following partial derivative
vanishes:

∂Lphys(pm−2,pm−1,pm,qm)

∂pm
= 0 ∀m. (9)

However, if we sum up Lphys over a sequence of N meshes
and require the summed-up loss to be at a local minimum,
as is done in Equation 8, then we are essentially requiring
the following derivatives to vanish:

∂Lphys(pm−2,pm−1,pm,qm)

∂pm
+

∂Lphys(pm−1,pm,pm+1,qm)

∂pm
+

∂Lphys(pm,pm+1,pm+2,qm)

∂pm
= 0 ∀m. (10)

The difference between Equation 9 and Equation 10 is
the reason that Equation 8 gives an incorrect result. To
resolve the problem, we slightly modify the back propagation
procedure of our training process by setting the partial
derivatives of Lphys with respect to its first two parameters
to zero:

∂Lphys(pm−2,pm−1,pm,qm)

∂[pm−1,pm−2]
= 0 ∀m,

which, combined with Equation 10, leads to Equation 9.
(We add similar gradient constraints when optimizing over
Equation 5.) This procedure is equivalent to an alternating
optimization procedure, where we first compute a sequence
of feature space coordinates, zm, using the recurrent net-
work (Equation 7) and then fix the first two parameters
zm−2, zm−1 and optimize Lmphys with respect to its third
parameter zm.

V. APPLICATIONS

The two novel components in our method, the ACAP−1

operator and the stateful PB-loss, enable a row of new
applications, including realtime cloth inverse kinematics and
feature space physics simulations.

A. Cloth Inverse Kinematics
Our first application allows a robot to grasp several points

of a piece of cloth and then infer the full kinematic configura-
tion of the cloth. Such inverse kinematics can be achieved by
minimizing a high-dimensional nonlinear potential energy,
such as ARAP energy [46], which is computationally costly.
Using the inverse of the ACAP feature extractor, our method
allows vertex-level constraints. Therefore, we can perform
solve for the cloth configuration by a fast, low-dimensional
minimization in the feature space as:

z∗ = argmin
z

L ◦ACAP−1 ◦D(z),

where we treat all the grasped vertices as control parameters
q used in Equation 6. This application is stateless and the
user controls a single feature of a mesh, z, so that we
drop the kinetic term in Lphys and only retain the potential
term Ps + Pb. Some inverse kinematic examples generated
using this formulation are shown in Figure 3. Note that
detailed wrinkles and cloth-like deformations are synthesized
in unconstrained parts of the meshes.

Fig. 3: Three examples of cloth inverse kinematics with
fixed vertices marked in red. Note that our method can
synthesize detailed wrinkles and cloth-like deformations in
unconstrained parts of the meshes (black box).

B. Feature Space Physics Simulation

For our second application, we approximate an entire cloth
simulation sequence (Equation 3) in the 128-dimensional
feature space. Starting from z1, z2, we can generate an entire
sequence of N frames by using the recurrent relationship
in Equation 7 and can recover the meshes via the function
ACAP−1 ◦D. Such a latent space physics model has been
previously proposed in [51] for voxelized grids, while our
model works on surface meshes. We show two synthesized
simulation sequences in Figure 4.

C. Accuracy of Learned Simulator for Robotic Cloth Manip-
ulation

We show three benchmarks (Figure 5) from robot cloth
manipulation tasks defined in prior work [27]. In these
benchmarks, the robot is collaborating with human to main-
tain a target shape of a piece of cloth. To design such a
collaborating robot controller, we use imitation learning by
teaching the robot to recognized cloth shapes under various,
uncertain human movements. Our learnable simulator can be
used to efficiently generate these cloth shapes for training the
controller. To this end, we train our neural-network using
the original dataset from [27] obtained by running the FEM-
based simulator [39], which takes 3 hours. During test time,
we perturb the human hands’ grasp points along randomly
directions. Our learned physical model can faithfully predict
the dynamic movements of the cloth.

(a)(b)

(c)(d)

Fig. 4: Two examples of simulation sequence generation
in our feature space. (a): 5 frames in the simulation of a
cloth swinging down. (b): Synthesized simulation sequence.
(c): Another example where two diagonal points are grasped.
(d): Synthesized simulation sequence.

(a) (b) (c) (d)

Fig. 5: We reproduce benchmarks from [27] where the robot is collaborating with human to manipulate a piece of cloth
(a). We randomly perturb two grasp points on the left (gray arms) and the robot is controlling the other two grasp points
(purple arms) using a visual-serving method to maintain the cloth at a target state, e.g., keeping the cloth flat (b), twisted
(c), or bent (d). The red cloth is the groundtruth acquired by running the accurate FEM-based cloth simulator [39], which
takes 3 hours. The difference between our result (blue) and the groundtruth is indistinguishable.

VI. RESULTS

To evaluate our method, we create two datasets of cloth
simulations using Equation 4. Our first dataset is called
SHEET, which contains animations of a square-shaped cloth
sheet swinging down under different conditions, as shown
in Figure 2 (a). This dataset involves 6 simulation se-
quences, each with N = 2400 frames. Among these 6
sequences, the first sequence uses the mass-spring model
[11] to discretize Equation 2 and the cloth mesh has no
holes (denoted as SHEET+[11]). The second and the third
simulation sequences in the dataset use different material
parameter, by multiplying the stretch/bend resistance term by
0.1 and thereby making the material softer and less resilient
when stretched or bent. These two sequences are denoted as
SHEET+[11]+0.1Ps and SHEET+[11]+0.1Pb, respectively.
The forth sequence uses the mass spring model and the
cloth mesh has holes, as shown in Figure 4 (a,b), which
is denoted as (SHEET+[11]+holes). The fifth sequence uses
FEM [39] to discretize Equation 2 and the cloth mesh has
no holes (denoted as SHEET+[39]). The sixth sequence
uses FEM to discretize Equation 2 and the cloth interacts
with an obstacle, as shown in Figure 2 (c) (denoted as
SHEET+[39]+obstacle). In the SHEET dataset, the cloth
mesh without holes has K = 4225 vertices and the cloth
mesh with holes has K = 4165 vertices. Our second dataset
is called BALL, which contains animations of a cloth ball
being dragged up and down under different conditions, as
shown in Figure 2 (d). This dataset also involves 4 simulation
sequences, each with N = 500 frames. Using the same
notation as the SHEET dataset, the 4 sequences in the BALL
dataset are (BALL+[11], BALL+[39], BALL+[39]+0.1Ps,
BALL+[39]+0.1Pb). In the BALL dataset, the cloth ball
mesh has K = 1538 vertices. During comparison, for each
dataset, we select first 12 frames in every 17 frames to form
the training set. The other frames are used as the test set.

A. Implementation
We implement our method using Tensorflow [1] and we

implement the PB-loss as a special network layer. When
there is an obstacle interacting with the cloth, we model the
collision between the cloth and the obstacle using a special
potential term proposed in [19]. For better conditioning and
a more robust initial guess, our training procedure is broken
into three stages. During the first stage, we use the loss:

L1 =
∑

λiLi i ∈ {recon, vert, ephys}

to optimize E,D. During the second stage, we use the loss:
L2 =

∑
λiLi i ∈ {sim,mphys}

to optimize MLP. Finally, we add a fine-tuning step and
use the loss:

L3 =
∑

λ′iLi i ∈ {recon, vert, ephys, sim}
to optimize both E,D and MLP. Notice that, in order to
train the mesh embedding network and MLP at the same
time, we feed:

z′ = 0.5 ∗ zm + 0.5 ∗MLP(zm−2, zm−1,qm)

to D for better stability during the third stage.

B. Physics Correctness of Low-Dimensional Embedding

We first compare the quality of mesh deformation embed-
dings using two different methods. The quality of embedding
is measured using three metrics. The first metric is the root
mean square error,Mrms [28], which measures the averaged
vertex-level error over all N shapes and K vertices. Our
second metric is the STED metric,MSTED [48]. This metric
linearly combines several aspects of errors crucial to visual
quality, including relative edge length changes and temporal
smoothness. However, since MSTED is only meaningful
for consecutive frames, we compute MSTED for the 5
consecutive frames in every 17 frames, which is the test
set. Finally, we introduce a third metric, physics correctness,
which measures how well the physics rule is preserved.
Inspired by Equation 9, physics correctness is measured
by the norm of partial derivatives of Lphys: Mphys =
‖∂Lphys/∂pm‖2. Note that the absolute value of Mphys

can vary case by case. For example, Mphys using the FEM
method can be orders of magnitude larger than that using
the mass-spring system in our dataset. So that only the
relative value of Mphys indicates improvement in physics
correctness.

Our first experiment compares the accuracy of mesh
embedding with or without PB-loss. The version without PB-
loss is our baseline, which is equivalent to adding vertex
level loss to [47]. In addition, we remove the sparsity
regularization from [47] to make it consistent with our for-
mulation. We denote this baseline as [47]+Lvert. A complete
summary of our experimental results is given in Table I. The
benefit of three-stage training is given in Table IV. From
Table I, we can see that including PB-loss significantly and
consistently improvesMphys. This improvement is large, up
to 70% on the SHEET+[39] dataset. In addition, by adding

Dataset Method Mrms MSTED Mphys

SHEET+[11]
ours 9.724 0.01556 14581.46

[47]+Lvert 10.351 0.01688 15446.70
[47] 11.841 0.01760 16198.02

SHEET+[11]
+0.1Ps

ours 10.477 0.01882 1996.01
[47]+Lvert 11.341 0.01957 2128.05

SHEET+[11]
+0.1Pb

ours 9.580 0.01675 10189.24
[47]+Lvert 11.319 0.01773 10260.39

SHEET+[11]
+holes

ours 12.456 0.02443 19548.58
[47]+Lvert 12.928 0.02480 20632.13

SHEET+[39] ours 10.671 0.01398 29109.03
[47]+Lvert 10.675 0.01195 103878.20

Dataset Method Mrms MSTED Mphys

SHEET+[39]
+obstacle

ours 8.075 0.01784 160545.91
[47]+Lvert 8.425 0.01885 155117.28

BALL+[11]
ours 17.008 0.02570 338465.20

[47]+Lvert 20.326 0.03018 459564.89
[47] 22.798 0.03622 476210.46

BALL+[39] ours 11.663 0.01501 49392520.44
[47]+Lvert 12.200 0.01662 61048220.56

BALL+[39]
+0.1Ps

ours 16.853 0.03394 80389.68
[47]+Lvert 17.706 0.03357 84508.12

BALL+[39]
+0.1Pb

ours 23.766 0.04320 674115.57
[47]+Lvert 27.390 0.05320 974481.48

TABLE I: We compare the embedding quality using our method (λrecon = 1, λvert = 1, λephys = 0.1 to 1, where λephys
for our method is tuned for different datasets.) and [47]+Lvert (λrecon = λvert = 1, λephys = 0). We also compare results
trained using dataset with different cloth material properties (0.1Ps means that the stretch resilience has 1/10 of the original
material value and 0.1Pb means ten times less bending resilience). From left to right: name of dataset, method used,Mrms,
MSTED, and Mphys.

Lephys, our method also better recognizes the relationship
between each model and embeds them, thus improvesMrms

in all the cases. However, our method sometimes sacrifice
MSTED as temporal smoothness is not modeled explicitly
in our method. Finally, we have added two rows to Table I,
comparing our method with and without Lvert, which shows
that Lvert effectively reduces the error in terms of absolute
vertex positions.

+Y
-Y
+R
-R
+X
-X

Movement Directions

+Y
-Y
+R
-R
+X
-X

Movement Directions

Fig. 6: A feature space visualization for SHEET+[11] using
t-SNE.

C. Discriminability of Feature Space

In our second experiment, we evaluate the discriminability
of mesh embedding by classifying the meshes using their
feature space coordinates. Note that our datasets (Figure 2)
are generated by moving the grasping points back and
forth. We use these movement directions as the labels for
classification. For the SHEET dataset, we have 6 labels:
±X/Y,±R, where ±R means rotating the grasping points
around ±Z axes. For the BALL dataset, we have 2 labels:
±Z. Note that it is trivial to classify the meshes if we know
the velocity of the grasping points. However, this information
is missing in our feature space coordinates because ACAP
features are invariant to global rigid translation, which makes
the classification challenging. We visualize the feature space
using t-SNE [35] compressed to 2 dimensions in Figure 6.
We report retrieval performance in the KNN neighborhoods
across different K’s, using method suggested by [54]. The
normalized discounted cumulative gain (DCG) on the test set
for SHEET+[11] is 0.8045 and for BALL+[11] is 0.9128.

Method (1, 1, 0.1) (1, 1, 0.5) (1, 1, 1) [47]+Lvert [40] [25]

MSTED 0.01712 0.01635 0.01556 0.01688 0.03728 0.02381
Mphys 15164.34 14230.44 14581.46 15446.70 36038.51 30732.07

TABLE II: We compare the performance of our method
with several previous ones in terms of MSTED and Mphys

under different weights (λrecon, λvert, λephys) of L. The
experiment is done on the dataset SHEET+[11]. Our method
outperforms [47]+Lvert over a wide range of parameters.
Previous methods, including [40] and [25], generate even
worse results, which supports our choice of using convolu-
tional neural network and ACAP feature for mesh deforma-
tion embedding.

D. Sensitivity to Training Parameters

In our third experiment, we evaluate the sensitivity of our
method with respect to the weights of loss terms, as summa-
rized in Table II. Our method outperforms [47]+Lvert under
a range of different parameters. We have also compared our
method with other baselines such as [40] and [25]. As shown
in the last two columns of Table II, they generate even worse
result, which indicates that [47]+Lvert is the best baseline.

E. Robustness to Mesh Resolutions

In this experiment, we highlight the robustness of our
method to different mesh resolutions by lowering the res-
olution of our dataset. For SHEET+[11], we create a mid-
resolution counterpart with K = 1089 vertices and a low-
resolution counterpart with K = 289 vertices. On these two
new datasets, we compare the accuracy of mesh embedding
with or without PB-loss. The results are given in Table III.
Including PB-loss consistently improves Mphys and overall
embedding quality, no matter the resolution used.

F. PB-Loss with Alternative Neural Network Architectures

Our PB-loss is orthogonal to the architecture of neural
networks. Therefore, we have conducted an additional set
of experiments to highlight the performance improvement
using a full-connected underlying neural network like [17].
The results are shown in Table V.

G. Difficulty in Contact Handling

One exception appears in the SHEET+[39]+obstacle (blue
row in Table I), where our method deteriorates physics

Dataset #Vertices Method Mrms MSTED Mphys

SHEET+[11]

4225 ours 9.724 0.01556 14581.46
4225 [47]+Lvert 10.351 0.01688 15446.70
1089 ours 11.744 0.01511 15712.89
1089 [47]+Lvert 11.842 0.1648 16076.44
289 ours 11.757 0.01273 10565.27
289 [47]+Lvert 12.510 0.01543 15498.58

TABLE III: We profile the improvement in various met-
rics under different mesh resolution (λrecon = 1, λvert =
1, λephys = 0.5 to 1), compared with [47]+Lvert. From
left to right: name of dataset, number of vertices, method
used,Mrms,MSTED, andMphys. Our method consistently
outperforms [47]+Lvert.

Dataset Method Mrms MSTED Mphys

SHEET+[11]
baseline 15.184 0.01765 21019.28

2nd stage 14.910 0.01705 18103.66
3rd stage 14.000 0.01672 17819.85

SHEET+[11]+holes
baseline 18.843 0.02703 29673.30

2nd stage 17.909 0.02667 28526.89
3rd stage 17.412 0.02633 28393.81

TABLE IV: We compare the physical simulation perfor-
mance of MLP after training with λmphys = 0 (baseline),
training with λmphys = 0.5 to 1 (2nd stage), and fine-tuning
(3rd stage). For the 5 consecutive meshes in every 17 frames
(the test set), we give MLP the first 2 frames and predict
the remaining 3 frames to generate this table.

correctness. This is the only dataset where the mesh is
interacting with an obstacle. The deterioration is due to the
additional loss term penalizing the penetration between the
mesh and the obstacle. This term is non-smooth and has very
high value and gradient when the mesh is in penetration,
making the training procedure unstable. This means that
direct learning a feature mapping for meshes with contacts
and collisions can become unstable. However, we can solve
this problem using a two-stage method, where we first learn a
feature mapping for meshes without contacts and collisions,
and then handle contacts and collisions at runtime using
conventional method [22], as is done in [7].

H. Speedup over FEM-Based Cloth Simulators

In Table VI, we have used our neural network as a physics
simulator and compared its performance with a conventional
FEM-based method. Our method achieves 500 − 10000×
speedup over the FEM-based method [39] on average.

VII. CONCLUSION & LIMITATIONS

In this paper, we present a new method that bridges the
gap between mesh embedding and and physical simulation
for efficient dynamic models of clothes. We achieve low-
dimensional mesh embedding using a stateless, graph-based
CNN that can handle arbitrary mesh topologies. To make the
method aware of physics rules, we augment the embedding
network with a stateful feature space simulator represented
as a MLP. The learnable simulator is trained to minimize
a physics-inspired loss term (PB-loss). This loss term is
formulated on the vertex level and the transformation from
the ACAP feature level to the vertex level is achieved using
the inverse of the ACAP feature extractor.

Dataset Method Mrms MSTED Mphys

SHEET+[11] FC+Lvert+Lephys 22.700 0.01742 16565.55
FC+Lvert 24.020 0.02043 19628.23

SHEET+[11]
+holes

FC+Lvert+Lephys 18.513 0.02504 21852.67
FC+Lvert 19.253 0.02684 22748.91

TABLE V: We use a fully connected underlying neural
network like [17] and train with or without our PB-loss.
The profiled results show that our method can improve
performance in terms of Mrms, MSTED, Mphys, which
is independent of the type of neural network architectures.

Dataset #Vertices NN(s) FEM(s)

SHEET+[11] 4225 3.259 9094.906
SHEET+[11]+holes 4166 3.432 10336.001
Figure 5 (b) 1089 1.697 582.635
Figure 5 (c) 1089 1.701 701.971
Figure 5 (d) 1089 1.883 893.197

TABLE VI: We compare the computational time to generate
a sequence of cloth data using our stateful neural network
and the conventional FEM-based method.

Our method can be used for several applications, includ-
ing fast inverse kinematics of clothes and realtime feature
space physics simulation. We have evaluated the accuracy
and robustness of our method on two datasets of physics
simulations with different material properties, mesh topolo-
gies, and collision configurations. Compared with previous
models for embedding, our method achieves consistently
better accuracy in terms of physics correctness and the mesh
change smoothness metric ([48]).

A future research direction is to apply our method to other
kinds of deformable objects, i.e., volumetric objects [23].
Each and every step of our method can be trivially extended
to handle volumetric objects by replacing the triangle surface
mesh with a tetrahedral volume mesh. A minor limitation
of the current method is that the stateful MLP and the
stateless mesh embedding cannot be trained in a fully end-
to-end fashion. We would like to explore new optimization
methods to train the two networks in an end-to-end fashion
while achieving good convergence behavior. Finally, our
approach is limited to a single setting of thin-shell simulation
and needs to be re-trained whenever there are changes in
the resolution of the mesh, the material parameters, or the
obstacles in the environment.

VIII. ACKNOWLEDGEMENT

This work was supported by ARO grants
(W911NF1810313 and W911NF1910315) and Intel.
Lin Gao was partially supported by the National Natural
Science Foundation of China (No. 61872440) and Beijing
Municipal Natural Science Foundation (No. L182016).

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in USENIX OSDI, 2016, pp. 265–283.

[2] M. Alexa and W. Müller, “Representing animations by principal components,” Comp. Graph.
Forum, vol. 19, no. 3, pp. 411–418, 2000.

[3] R. Alterovitz, M. Branicky, and K. Goldberg, “Motion planning under uncertainty for image-guided
medical needle steering,” The International journal of robotics research, vol. 27, no. 11-12, pp.
1361–1374, 2008.

[4] R. Alterovitz, K. Y. Goldberg, J. Pouliot, and I.-C. Hsu, “Sensorless motion planning for med-
ical needle insertion in deformable tissues,” IEEE Transactions on Information Technology in
Biomedicine, vol. 13, no. 2, pp. 217–225, 2009.

[5] Y. Bai, W. Yu, and C. K. Liu, “Dexterous manipulation of cloth,” in Comp. Graph. Forum, vol. 35,
no. 2. Wiley Online Library, 2016, pp. 523–532.

[6] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in SIGGRAPH. ACM, 1998, pp. 43–54.
[7] J. Barbič and D. L. James, “Subspace self-collision culling,” ACM Trans. Graph., vol. 29, no. 4, pp.

81:1–81:9, 2010.
[8] C. Bersch, B. Pitzer, and S. Kammel, “Bimanual robotic cloth manipulation for laundry folding,” in

IEEE/RSJ IROS, Sep. 2011, pp. 1413–1419.
[9] C. A. Brebbia and M. H. Aliabadi, Eds., Industrial Applications of the Boundary Element Method.

Billerica, MA, USA: Computational Mechanics, Inc., 1993.
[10] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and recognition using structure

from motion point clouds,” in ECCV, 2008, pp. 44–57.
[11] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth,” in SIGGRAPH ’02. ACM, 2002, pp.

604–611.
[12] A. Clegg, W. Yu, J. Tan, C. K. Liu, and G. Turk, “Learning to dress: Synthesizing human dressing

motion via deep reinforcement learning,” ACM Trans. Graph., vol. 37, no. 6, pp. 179:1–179:10,
Dec. 2018.

[13] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing of irregular meshes using
diffusion and curvature flow,” in SIGGRAPH ’99. ACM, 1999, pp. 317–324.

[14] C. Duriez, “Control of Elastic Soft Robots based on Real-Time Finite Element Method,” in IEEE
ICRA, Karlsruhe, France, 2013.

[15] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R. P.
Adams, “Convolutional networks on graphs for learning molecular fingerprints,” in NIPS, 2015, pp.
2224–2232.

[16] J. Fras, Y. Noh, M. Macias, H. Wurdemann, and K. Althoefer, “Bio-inspired octopus robot based
on novel soft fluidic actuator,” in IEEE ICRA, May 2018, pp. 1583–1588.

[17] L. Fulton, V. Modi, D. Duvenaud, D. I. W. Levin, and A. Jacobson, “Latent-space dynamics for
reduced deformable simulation,” Computer Graphics Forum, 2019.

[18] L. Gao, Y.-K. Lai, J. Yang, L.-X. Zhang, L. Kobbelt, and S. Xia, “Sparse Data Driven Mesh
Deformation,” arXiv:1709.01250, 2017.

[19] T. F. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. M. Teran, “Optimization integrator for
large time steps,” IEEE transactions on visualization and computer graphics, vol. 21, no. 10, pp.
1103–1115, 2015.

[20] A. George and E. Ng, “On the complexity of sparse qr and lu factorization of finite-element
matrices,” SIAM Journal on Scientific and Statistical Computing, vol. 9, no. 5, pp. 849–861, 1988.

[21] E. Grinspun, A. N. Hirani, M. Desbrun, and P. Schröder, “Discrete shells,” in Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA ’03. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2003, pp. 62–67.

[22] G. Hirota, S. Fisher, and M. Lin, “Simulation of non-penetrating elastic bodies using distance fields,”
2000.

[23] Z. Hu, T. Han, P. Sun, J. Pan, and D. Manocha, “3-d deformable object manipulation using deep
neural networks,” IEEE RA-L, vol. PP, pp. 1–1, 07 2019.

[24] J. Huang, Y. Tong, K. Zhou, H. Bao, and M. Desbrun, “Interactive shape interpolation through
controllable dynamic deformation,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 7, pp. 983–992, July 2011.

[25] Z. Huang, J. Yao, Z. Zhong, Y. Liu, and X. Guo, “Sparse localized decomposition of deformation
gradients,” Comp. Graph. Forum, vol. 33, no. 7, pp. 239–248, 2014.

[26] B. Jia, Z. Pan, Z. Hu, J. Pan, and D. Manocha, “Cloth manipulation using random forest-based
controller parametrization,” CoRR, vol. abs/1802.09661, 2018.

[27] B. Jia, Z. Pan, and D. Manocha, “Fast motion planning for high-dof robot systems using hierarchical
system identification,” 2018.

[28] L. Kavan, P.-P. Sloan, and C. O’Sullivan, “Fast and efficient skinning of animated meshes,” Comp.
Graph. Forum, vol. 29, no. 2, pp. 327–336, 2010.

[29] D. P. Kingma and M. Welling, “Auto-encoding variational bayes.” arXiv:1312.6114, 2013.
[30] K. Lakshmanan, A. Sachdev, Z. Xie, D. Berenson, K. Goldberg, and P. Abbeel, “A constraint-aware

motion planning algorithm for robotic folding of clothes,” in Experimental Robotics. Springer,
2013, pp. 547–562.

[31] M. G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementation, and Applica-
tions. Springer Publishing Company, Incorporated, 2013.

[32] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding deformable objects using predictive
simulation and trajectory optimization,” in IEEE/RSJ IROS. IEEE, pp. 6000–6006.

[33] Y.-J. Lim and S. De, “Real time simulation of nonlinear tissue response in virtual surgery using the
point collocation-based method of finite spheres,” Computer Methods in Applied Mechanics and
Engineering, vol. 196, no. 31-32, pp. 3011–3024, 2007.

[34] T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan, “Fast simulation of mass-spring systems,” ACM
Trans. Graph., vol. 32, no. 6, pp. 209:1–7, Nov. 2013.

[35] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research,
vol. 9, no. Nov, pp. 2579–2605, 2008.

[36] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer, V. G. Kim, and Y. Lipman,
“Convolutional neural networks on surfaces via seamless toric covers,” ACM Trans. Graph., vol. 36,
no. 4, pp. 71:1–71:10, July 2017.

[37] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time object
recognition,” in IEEE/RSJ IROS, Sept 2015, pp. 922–928.

[38] K. Nakajima, “Muscular-hydrostat computers: Physical reservoir computing for octopus-inspired
soft robots,” in Brain Evolution by Design. Springer, 2017, pp. 403–414.

[39] R. Narain, A. Samii, and J. F. O’Brien, “Adaptive anisotropic remeshing for cloth simulation,” ACM
Trans. Graph., vol. 31, no. 6, pp. 147:1–10, Nov. 2012.

[40] T. Neumann, K. Varanasi, S. Wenger, M. Wacker, M. Magnor, and C. Theobalt, “Sparse localized
deformation components,” ACM Trans. Graph., vol. 32, no. 6, pp. 179:1–179:10, Nov. 2013.

[41] Y. J. Oh, T. M. Lee, and I.-K. Lee, “Hierarchical cloth simulation using deep neural networks,”
arXiv:1802.03168, 2018.

[42] Z. Pan and D. Manocha, “Realtime planning for high-dof deformable bodies using two-stage
learning,” in IEEE ICRA, May 2018, pp. 1–8.

[43] Z. Pan, C. Park, and D. Manocha, “Robot motion planning for pouring liquids,” in Twenty-Sixth
International Conference on Automated Planning and Scheduling, 2016.

[44] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolu-
tional generative adversarial networks,” arXiv:1511.06434, 2015.

[45] A. Rajeswaran*, V. Kumar*, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine, “Learn-
ing Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations,” in
Proceedings of Robotics: Science and Systems (RSS), 2018.

[46] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in Proceedings of the Fifth
Eurographics Symposium on Geometry Processing, ser. SGP ’07. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2007, pp. 109–116.

[47] Q. Tan, L. Gao, Y. Lai, J. Yang, and S. Xia, “Mesh-based autoencoders for localized deformation
component analysis,” in AAAI, 2018.

[48] L. Vasa and V. Skala, “A perception correlated comparison method for dynamic meshes,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 2, pp. 220–230, Feb. 2011.

[49] B. Wang, L. Wu, K. Yin, L. Liu, and H. Huang, “Deformation capture and modeling of soft objects,”
ACM Trans. Graph., vol. 34, no. 4, pp. 94:1–94:12, 2015.

[50] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models for human
motion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 283–
298, Feb 2008.

[51] S. Wiewel, M. Becher, and N. Thuerey, “Latent-space physics: Towards learning the temporal
evolution of fluid flow,” arXiv:1802.10123, 2018.

[52] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempogan: A temporally coherent, volumetric gan for
super-resolution fluid flow,” ACM Trans. Graph., vol. 37, no. 4, p. 95, 2018.

[53] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, “Perspective transformer nets: Learning single-view
3d object reconstruction without 3d supervision,” arXiv:1612.00814, 2016.

[54] Z. Yang, J. Peltonen, and S. Kaski, “Optimization equivalence of divergences improves neighbor
embedding,” in ICML, 2014, pp. 460–468.

[55] J. Zhu, S. C. H. Hoi, and M. R. Lyu, “Nonrigid shape recovery by gaussian process regression,” in
IEEE CVPR, June 2009, pp. 1319–1326.

[56] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,” J. Comp. Graph.
Statistics, vol. 15, p. 2006, 2004.

	Introduction
	Related Work and Background
	Low-Dimensional Mesh Embedding
	ACAP Feature
	Graph-Based CNN for Feature Embedding

	Physics-Based Loss Term
	The Inverse of the ACAP Feature Extractor
	Stateful Recurrent Neural Network

	Applications
	Cloth Inverse Kinematics
	Feature Space Physics Simulation
	Accuracy of Learned Simulator for Robotic Cloth Manipulation

	Results
	Implementation
	Physics Correctness of Low-Dimensional Embedding
	Discriminability of Feature Space
	Sensitivity to Training Parameters
	Robustness to Mesh Resolutions
	PB-Loss with Alternative Neural Network Architectures
	Difficulty in Contact Handling
	Speedup over FEM-Based Cloth Simulators

	Conclusion & Limitations
	Acknowledgement
	References

