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1 Abstract
3D geometric contents are becoming increasingly popular. In this paper, we study the 
problem of analyzing deforming 3D meshes using deep neural networks. Deforming 3D 
meshes are flexible to represent 3D animation sequences as well as collections of ob-
jects of the same category, allowing diverse shapes with large-scale non-linear defor-
mations. We propose a novel framework which we call mesh variational autoencoders 
(mesh VAE), to explore the probabilistic latent space of 3D surfaces. The framework is 
easy to train, and requires very few training examples. We also propose an extended 
model which allows flexibly adjusting the significance of different latent variables by al-
tering the prior distribution. Extensive experiments demonstrate that our general frame-
work is able to learn a reasonable representation for a collection of deformable shapes, 
and produce competitive results for a variety of applications, including shape genera-
tion, shape interpolation, shape space embedding and shape exploration, outperform-
ing state-of-the-art methods.

2 Feature Representation
Rotation-invariant mesh difference (RIMD) feature[1]

   —Linearly combinable 
   —Mean reconstruction error extremely small
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RIMD representation

uniform normalization

fit activation function tanh
    → avoid gradient vanishing problem
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j

i−
j̃
i )

2 +DKL(q(z |̃ , c)‖p(z|c))

3 Mesh VAE & Conditional Mesh VAE
Reconstruction Loss + KL divergence[2]

Condition on labels[3] → Control the types of shapes to be generated

4 Network Architecture 6 Random Generation

generate more specific models

7 Graph Convolution
Combine convolutional operation on irregular graph[4]

   → Lower reconstruction errors
Ours With Conv.Dataset
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Quantitative analyzation
   Retrieval task on Dyna dataset
   Using styles and poses as labels
   AUC:
      Our method (0.5168) > t-SNE (0.4961)
      > PCA (0.2272) > NPE (0.1391)
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5 Extended model with Improved Low-
Dimensional Embedding

Modify the prior distribution of the 
latent variables
p(z) = N (z; 0, diag(σ2

object))
tunable vector

Dimension with small  σobjecti

→ Capture dominant changes
Mesh VAE

convMesh
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