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Spatially localized deformation components are very useful for 
shape analysis and synthesis in 3D geometry processing. Several 
methods have recently been developed, with an aim to extract intu-
itive and interpretable deformation components. However, these 
techniques suffer from fundamental limitations especially for 
meshes with noise or large-scale deformations, and may not 
always be able to identify important deformation components. In 
this paper we propose a novel mesh-based autoencoder architec-
ture that is able to cope with meshes with irregular topology. We in-
troduce sparse regularization in this framework, which along with 
convolutional operations, helps localize deformations. Our frame-
work is capable of extracting localized deformation components 
from mesh data sets with large-scale deformations and is robust to 
noise. It also provides a nonlinear approach to reconstruction of 
meshes using the extracted basis, which is more effective than the 
current linear combination approach.
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2 Feature Representation
argmin

Tm,i

∑
j∈N(i)

cij‖(pm,i − pm,j)−Tm,i(p1,i − p1,j)‖22 Tm,i deformation gradient

polar decomposition

Tm,i = Rm,iSm,i

rotation matrix, scale and shear matrix 

ωm,irotating around an axis
θm,iby an angle

rewritten as

Ωm,i = {(ωm,i, θm,i + t · 2π), (−ωm,i,−θm,i + t · 2π)}
choose unique representation from

[1]

extracting non-trivial elements
& normalized Xm,i = {r̃m,i, s̃m,i}

deformation feature

4 Loss
yi = Wpointxi +Wneighbour

∑Di
j=1 xnij

Di
+ bconvolutional operation

(extended from [2])

sparsity constraints
(following [3])

Ω(C) = 1
K

∑K
k=1

∑V
i=1 Λik‖Ci

k‖2

V(Z) = 1
K

∑K
j=1(maxm |Zjm| − θ)regularization term

avoid trivial solution

Total Loss L = 1
N

∑N
m=1 ‖X̂m −Xm‖22 + λ1Ω(C) + λ2V(Z)

autoencoder structure
detailed pipeline in Fig. 1

X ∈ RV×9

C ∈ RK×µV

z = Cf

f̂ = CT z

X̂ ∈ RV×9

deformation
components

stacked to
   combinational weights

Quantitative Evaluation
We compare the generalization ability of our method with several 
state-of-art  methods, and the results are shown in Fig. 2.

Qualitative Evaluation
We demonstrate the components extracted from SCAPE by differ-
ent methods in Fig. 3, and the synthesized model in Fig. 4.

6 Results
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3 Network Architecture (Fig. 1)
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Fig. 2 Errors of applying our model to generate unseen data

Fig. 3 Deformation components extracted from SCAPE

Fig. 4 Synthesized models

(a) combining deformation components ex-
tracted by our method from the Swing data-
set with equal weights

(b) components about lifting the left arm 
extracted by our method with weights 0.3, 
0.6 and 0.9 


